Within the standard model of theoretical elementary particle physics all fundamental interactions - except gravity - are described by (relativistic) quantum field theories. Quantum chromodynamics, abbr. QCD, is the quantum field theory of strong interactions; its basic dynamical degrees of freedom are quarks and gluons, the particles mediating the strong interactions. The strong interaction binds these quarks and gluons to, for instance, protons and neutrons, and eventually protons and neutrons to nuclei.
The theory of strong interactions exhibits two rather peculiar features:
Both of these phenomena are entirely non-perturbative effects: Any perturbative approach to QCD (which, by construction, represents merely an approximation and which, in the case of QCD, is particularly far from reality) cannot reveal these phenomena. Accordingly, any meaningful description of QCD bound states has to rely on different, more appropriate methods.
Present research interests
The group is supported by the Austrian Science Fund (FWF).