Quarks, Gluons, QCD

- Quarks: from a concept of classification to physics reality
- Deep inelastic electron scattering
 - Pointlike constituents: ‘partons’
 - Quantitative analysis: partons have spin $\frac{1}{2}$ and fractional charge
- e^+e^- annihilation:
 - Number of quarks; color charge of quarks
 - Discovery of gluons
- QCD Lagrangian
 - Difference to QED
 - Quark-Gluon Plasma
Status of Quarks: ca 1966

- **Implausibility of Quark Model** (Jerome Friedmann (Nobel Prize 1976 for the experimental evidence for substructure)

- “...the idea that mesons and baryons are made primarily of quarks is hard to believe..” (M. Gell-Mann 1966)

- “Additional data are necessary and very welcome to destroy the picture of elementary constituents.” (J. Bjorken 1967)

- “I think Professor Bjorken and I constructed the sum rules in the hope of destroying the quark model.” (K. Gottfried 1967)

- “Of course the whole quark idea is ill founded.” (J.J. Kokkedee 1969)
Probing the size of the proton

• Probing the charge distribution, shown in figure

• Approach; measure the angular distribution of scattered electrons and compare to pointlike distribution

\[\frac{d\sigma}{d\Omega} = \left(\frac{d\sigma}{d\Omega} \right)_{\text{point}} |F(q)|^2 \quad \text{with} \quad q = k_i - k_f ; \quad |F(q)| \ldots \text{Form factor} \]

• Example: scattering of unpolarized electrons from static charge distribution \(Z e \rho(\vec{x}) \)

• For a static target: \(F(\vec{q}) = \int \rho(\vec{x}) e^{i\vec{q}\cdot\vec{x}} \, d^3x \) \ldots \text{Fourier transform of charge distribution} \]

• Form factor is Fourier transform of charge distribution

• Lorentz invariant four-momentum transfer

\[q^2 = (E - E')^2 - (\vec{p} - \vec{p}')^2 \approx -4 \, E \, E' \, \sin^2 \left(\frac{\theta}{2} \right) \]
\[e^- \mu^- \rightarrow e^- \mu^- \]

- Reaction is relevant for understanding lepton scattering on constituents
- Scattering cross section in Lab frame (muon at rest, mass \(M \))

\[
\left(\frac{d\sigma}{d\Omega} \right)_{lab} = \frac{\alpha^2}{4E^2 \sin^4 \frac{\theta}{2}} \frac{E'}{E} \left(\cos^2 \frac{\theta}{2} - \frac{q^2}{2M^2} \sin^2 \frac{\theta}{2} \right)
\]

- Scattering cross section of electron on spin \(\frac{1}{2} \) particle
- Electron beam used to study dimension and internal structure of protons
Charge distribution of proton

- For $|q|$ small; (small energy transfer, large ‘equivalent’ wavelength of electron)
 \[F(\vec{q}) = \int \left(1 + i\vec{q} \cdot \vec{x} - \frac{(\vec{q} \cdot \vec{x})^2}{2} + \ldots \right) \rho(\vec{x}) \, d^3x = 1 - \frac{1}{6} |\vec{q}|^2 \langle r^2 \rangle \]
 assuming that charge distribution is spherically symmetric

- Low $|q|$, i.e. small angle scattering measures the mean square charge radius

- Cannot directly be applied to protons
 - Need to also consider magnetic moment; proton not static, will recoil

- Reference point-like cross-section is same as $e\mu$ scattering with M_p
 \[\left(\frac{d\sigma}{d\Omega} \right)_{lab} = \frac{\alpha^2}{4E^2 \sin^4 \theta / 2 \frac{E'}{E}} \left(A \cos^2 \frac{\theta}{2} - B \frac{q^2}{2M^2} \sin^2 \frac{\theta}{2} \right) \]
 where $A, B = 1$ for point-like proton; E/E' from proton recoil
Charge distribution of proton

- Generalizing to extended source, one obtains two form factors (electric and magnetic) with κ being the anomalous magnetic moment with the result
 \[
 A = \left(F_1^2 - \frac{\kappa^2}{4M^2} F_2^2 \right), \quad B = -\frac{q^2}{2M^2} \left(F_1 + \kappa F_2 \right)^2
 \]

- ‘Rosenbluth’ formula; the two form factors $F_{1,2}(q^2)$ summarize the structure of the proton; determined experimentally; formula reduces to pointlike formula for $\kappa=0$ and $F_1(q^2) = 1$

- In practice $G_E = F_1 + \frac{\kappa q^2}{4M^2} F_2$, $G_M = F_1 + \kappa F_2$

- For protons: $\left< r^2 \right> = (0.81 \times 10^{-13} \text{ cm})^2$

- Nobel prize for Hofstaedter in 1961
Proton form factor versus q^2

Fourier transform of this Form factor is exponential
Charge distribution

$$\rho (r) = \rho_0 \exp(- \frac{q_0}{r})$$
Inelastic Electron-Proton scattering

• Probing the internal structure of the proton
 - Increase the momentum transfer q^2 of the photon, equivalent to photons of shorter wavelength
 - However, if proton is composite object, it will get excited, break up under large momentum transfer, producing system of particles with invariant mass W
 - For inelastic scattering:
 - Need two variables:
 - For example: W, q^2
The ep -> eX cross section

- The ep-> eX cross section as a function of the invariant mass of the particle system produced. The peak at invariant mass $W \approx M$ corresponds to scattering which does not breakup the proton; the peaks at higher W correspond to excited states of the proton; beyond the resonances multiparticle states with large invariant mass result in a smooth behaviour.

(elastic peak at $W=M_p$ is reduced by factor 8.5)
Deep inelastic scattering

- Generalization of the inelastic scattering process follows the formalism for $e^- \mu^- \rightarrow e^- \mu^-$, but requires a more complicated description of the proton interaction, with two independent variables

 $Q^2 = -q^2$, q...four-momentum of virtual photon; $q = k-k'$;

 1. Q defines scale d probed: $d = \frac{hc}{Q} \approx 0.2 \text{ fm GeV}/Q \ldots 10^{-14}\text{ cm for } Q = 2 \text{ GeV}$
 2. $\nu = \frac{p \cdot q}{M}$ M..proton mass;

 or alternatively

 $x = \frac{Q^2}{2p \cdot q} = \frac{Q^2}{2M\nu}$...Bjorken scaling variable

 $y = \frac{p \cdot q}{p \cdot k}$...relative energy loss of electron in proton rest frame

 $W^2 = (p+q)^2 = M^2 + 2\nu M + q^2$ Invariant mass of final hadronic system

- Giving the final result

 $\left(\frac{d\sigma}{dE'd\Omega}\right)_{lab} = \frac{4\alpha^2 E'^2}{q^4} \left(W_2(\nu, q^2) \cos^2 \theta / 2 + 2W_1(\nu, q^2) \sin^2 \theta / 2\right)$

 with W_1 and W_2 to be determined experimentally... see later
Summary: electron scattering

- The differential cross section for $e\mu \rightarrow e\mu$, $ep \rightarrow ep$ (elastic) and $ep \rightarrow eX$ can be written as

\[
\left(\frac{d\sigma}{dE'd\Omega} \right)_{lab} = \frac{4\alpha^2 E'^2}{q^4} \{...\}
\]

- For $e\mu \rightarrow e\mu$

\[
\{...\} = \left(\cos^2 \theta / 2 - \frac{q^2}{2m^2} \sin^2 \theta / 2 \right) \delta \left(\nu + \frac{q^2}{2m} \right)
\]

- For $ep \rightarrow ep$ (elastic)

\[
\{...\} = \left(\frac{G_E^2 + \tau G_M^2}{1 + \tau} \cos^2 \theta / 2 + 2\tau G_M^2 \sin^2 \theta / 2 \right) \delta \left(\nu + \frac{q^2}{2M} \right)
\]

- Integration over δ-function gives

\[
\left(\frac{d\sigma}{d\Omega} \right) = \frac{\alpha^2}{4E^2 \sin^4 \theta / 2} \frac{E'}{E} \{...\}
\]

- For $ep \rightarrow eX$ very similar; see expression on previous slide
Studying the sub-structure of the proton

- The formalism developed for deep inelastic scattering $e p \rightarrow e X$ can be applied to the special case of probing a possible proton sub-structure
 - Using sufficiently small wavelength (i.e. sufficiently large q^2) it is possible to resolve a possible substructure, i.e. constituents
 - The breaking-up of the proton is described by the inelastic form factors W_1 and W_2
 - The scattering formalism is applied to electron scattering on the constituents, assuming certain properties
Probing the proton composition

- Assuming **pointlike** constituents (‘partons’) with **spin** $\frac{1}{2}$, the scattering cross section is related to $e\mu$-scattering with (for convenience $Q^2 = -q^2$)

$$2W_1^{po\text{int}}(\nu, Q^2) = \frac{Q^2}{2m^2} \delta (\nu - \frac{Q^2}{2m})$$

$$W_2^{po\text{int}}(\nu, Q^2) = \delta (\nu - \frac{Q^2}{2m})$$

- m is the mass of the parton (or quark); pointlike: structureless Dirac particle
- Using the identity $\delta (x/a) = a \delta (x)$ one finds

$$2mW_1^{po\text{int}}(\nu, Q^2) = \frac{Q^2}{2m \nu} \delta (1 - \frac{Q^2}{2m \nu}) \quad \nu W_2^{po\text{int}}(\nu, Q^2) = \delta (1 - \frac{Q^2}{2m \nu})$$

- With the intriguing result that these functions depend only on the ratio $x = Q^2/2m\nu$ and not on Q^2 and ν independently -> Bjorken scaling
Probing the proton composition

- Summarizing and replacing the parton mass scale with the proton mass scale M

\[MW_{1}^{point}(\nu, Q^{2}) \rightarrow F_{1}(\omega) \quad \nu W_{2}(\nu, Q^{2}) \rightarrow F_{2}(\omega) \]

for large Q^{2} and $\omega = 2M\nu/Q^{2}$; at a given ω, the structure functions are measured to be independent of Q^{2} at constant Bjorken x
- Inelastic structure functions are independent on Q^{2} -> constituents are pointlike and quasi-free (inside the proton)
- One experimental example
- Structure function = Fourier Transform of charge distribution \(\rightarrow\) St.F. is constant \(\rightarrow\) charge distrib. is pointlike!
What are the properties of the ‘partons’?

- Partons are spin ½, electrically charged pointlike particles

\[E, p = \sum_i \int dx \, e_i^2 \]

- This picture recognizes that there are various partons in the proton: e.g. u, d quarks with different charges; uncharged gluons, with which the photon does not react; they carry different fraction \(x \) of the parent proton’s momentum and energy →

- Parton momentum distribution

\[f_i(x) = \frac{dP_i}{dx} = \frac{p}{(1-x)p} \]
Parton momentum distribution functions

• $f_i(x)$ gives probability that parton i carries fraction x of the proton’s momentum p; all the fractions have to add up to 1

$$\sum_i \int dx \, x \, f_i(x) = 1$$

• Which leads to the following expressions for the structure functions

$$\nu W_2 (\nu, Q^2) \to F_2(x) = \sum_i e_i^2 x f_i(x)$$

$$MW_1 (\nu, Q^2) \to F_1(x) = \frac{1}{2x} F_2(x)$$

with $x = 1/\omega = Q^2/2M\nu$, only dependent on x

• The momentum fraction is found to be identical to the kinematical variable x of the virtual photon: the virtual photon must have the right value of x to be absorbed by the parton with momentum fraction x
Looking at quarks inside the proton

- Proton is composed of the constituent quarks (u,d quarks) (or ‘valence’ quarks), gluons, and quark-antiquark pairs (‘sea’ quarks)

\[
\frac{1}{x} F_2^p (x) = \left(\frac{2}{3} \right)^2 [u^p (x) + \bar{u}^p (x)] + \left(\frac{1}{3} \right)^2 [d^p (x) + \bar{d}^p (x)] + \left(\frac{1}{3} \right)^2 [s^p (x) + \bar{s}^p (x)]
\]
Looking at quarks inside the proton

- Six unknown quark structure functions; additional information is provided by measuring electron-deuteron scattering, providing information on the corresponding neutron structure functions

\[\frac{1}{x} F_2^n(x) = \left(\frac{2}{3}\right)^2 [u^n(x) + \bar{u}^n(x)] + \left(\frac{1}{3}\right)^2 [d^n(x) + \bar{d}^n(x)] + \left(\frac{1}{3}\right)^2 [s^n(x) + \bar{s}^n(x)] \]

- Due to isospin invariance their quark content is related
 - There are as many u quarks in the proton as d quarks in the neutron
 \[u^p(x) = d^n(x) \equiv u(x) \quad d^p(x) = u^n(x) \equiv d(x) \quad s^p(x) = s^n(x) \equiv s(x) \]

- Additional constraints: quantum numbers of proton must be those of the uud combination
- Measurement of \(F_2(x) \) confirms charge assignment of the u and d quarks
Conceptual form of the structure functions

- If the Proton is a quark, then $F_2^P(x)$ is.
- Three valence quarks.
- Three bound valence quarks.
- Three bound valence quarks + some slow debris, e.g., γ or π.

Small x
Valence quark distribution

From

\[
\frac{1}{x} \left[F_2^p (x) - F_2^n (x) \right] = \frac{1}{3} \left[u (x) - d (x) \right]
\]

one can directly measure the valence quark distributions
Quark structure functions

- From the analysis of deep inelastic scattering data
Quark structure functions: ‘state of the art’
Deep inelastic scattering (DIS) experiments at Stanford Linear Accelerator (SLAC)

- Developed in the late 1960’s; was at the time one of the largest experimental facilities
- Originally conceived to study elastic scattering -> extension to inelastic scattering met with some scepticism by the Program Committees: what can one learn?
- Established the quark structure
- Nobel prize (1990) for J.I. Friedman, H.W. Kendall and R.E. Taylor for ‘structure of the proton’
Summary: results from DIS

- From structure functions $F_2(x, Q^2) \approx F_2(x)$ -> nucleons are composed from pointlike constituents
- From $2x F_1(x) = F_2(x)$ -> constituents have spin $\frac{1}{2}$
- From experimental data on $F_2(x)$ for protons and neutrons (supplemented with data from DIS neutrino scattering) -> charge assignment for the u and d quarks
- From $\int F_2(x) \, dx$ -> quarks carry approximately 50 % of nucleon momentum; the rest is carried by the gluons; strong evidence for the reality and importance of gluons inside the nucleon
- Quantum numbers of the nucleon can be explained with the quantum number assignment of the quarks
e^+e^- Annihilations to Hadrons

- \(e^+ e^- \rightarrow Q \bar{Q} \rightarrow Q \rightarrow \text{hadron jet}, \, \bar{Q} \rightarrow \text{hadron jet} \)

- \(\sigma(e^+ e^- \rightarrow \text{anything}) \propto \frac{1}{s} \) (as for \(\mu^+ \mu^- \) production)
 - \(s \)…center of mass energy
- Peaks in cross-section are due to boson resonances
$e^+e^- \text{ Annihilations to Hadrons}$ vs center of mass energy s
Experimental proof of color charge of quarks

- Measurement of total cross section $\sigma (e^+e^- \rightarrow \text{hadrons})$ relative to $\sigma (e^+e^- \rightarrow \mu^+\mu^-)$
- Total cross section is obtained by summing over all contributing quarks:
 \[\sigma(e^+e^- \rightarrow q\overline{q}) = \sigma(e^+e^- \rightarrow \mu^+\mu^-) \cdot N_C \sum_i q_i^2 \]
 - N_C is the number of color charges (states)
 - The (three) color states of a quark have the same electric charge
 - The sum is over all energetically possibly produced quarks
- Measurement of the ratio
 \[R = \sigma(e^+e^- \rightarrow q\overline{q}) / \sigma(e^+e^- \rightarrow \mu^+\mu^-) = N_C \sum_i q_i^2 \]
 directly determines the number of color states
- Higher order effects (3 jets,..) modify R
 \[R = R_0 (1 + \alpha_s(Q^2) / \pi + ...) \]
Measurement of R

\[R = N_c \sum_f z_f^2 = N_c \cdot \left[\left(\frac{2}{3} \right)^2 + \left(-\frac{1}{3} \right)^2 + \left(-\frac{1}{3} \right)^2 + \left(\frac{2}{3} \right)^2 + \left(-\frac{1}{3} \right)^2 \right] = N_c \cdot \frac{11}{9} \]
• Discovery of gluons in the observation of $e^+e^- \rightarrow$ three Jets → quark jet+ antiquark jet + gluon jet
 - gluon is radiated by a quark (or antiquark)
• Independent confirmation in proton-proton collisions (quark-gluon scattering) and DIS (electrons and neutrinos)
$e^+e^- \rightarrow$ three Jets

- Angular distribution of the gluon jet is sensitive to spin of gluon:
 - Spin of gluon = 1 (vector boson)
- Three-jet events can also be used to determine α_s: rate of gluon radiation is proportional to α_s
Summary: $e^+e^- \rightarrow \text{hadrons}$

- Measurements are consistent with
 - fractional charge for the quarks and three color states (value of R)
 - Quarks (Antiquarks) can radiate gluons -> gluons have similar reality as quarks
 - Gluon radiation can be quantitatively used to measure α_s and to determine the spin of the gluon ($S=1$)
Questions regarding Quarks:

- How big are quarks? (present limit: $< 10^{-17}$ cm)
- Are quarks composite systems?
- Why are their masses so different?
- What is the origin of flavor?
- Why are there six flavors?

- New tool for probing some of these questions, among any others: LHC: will probe distances ~ 10-18 cm
Theory of Strong Interactions: Quantum Chromodynamics (QCD)

- **Status (approx. 1970)**
 - Concept of quarks introduced for classification of hadrons
 - The ‘Eightfold Way’ by Gell-Mann; similar concept by Zweig
 - Classification needed another ingredient, ‘color’ charge of quarks
 - Required to avoid problem with Pauli exclusion principle →
 $$\Delta^{++} (uuu), \Omega^{-} (sss),...$$
 - Free quarks were not observed -> are quarks really particles ?
 - DIS showed that proton has a substructure -> partons
 - Detailed experiments confirmed partons to have the properties of quarks (fractional charge, spin $\frac{1}{2}$)
 - Quantum Electrodynamics (QED) confirmed with high experimental accuracy -> local gauge invariance as principle for deriving the Lagrangian of particle interactions
 - Experimental tests of nascent electroweak theory contemplated

- **Ingredients prepared for attacking the ‘hardest’ problem: Strong Interactions**
Color: Quantum Chromodynamics (QCD)

- Role of color
 - Example: ‘red’ quark carries one unit of ‘Redness’, zero greenness and blueness; antiquark carries *minus* one unit of redness
 - All naturally occurring particles are colorless
 - ‘Colorless’:
 - Total amount of each color is zero
 - or
 - All three colors are present in equal amounts
- Only colorless combinations are
 \[q \bar{q} \quad (\text{mesons}), \quad qqq \quad (\text{baryons}), \quad \bar{q} \quad \bar{q} \quad \bar{q} \quad (\text{antibaryons}) \]
Quantum Chromodynamics (QCD)

- In QCD: color ‘charge’ is equivalent to electric charge in QED charge
- Fundamental vertex
 \[q \rightarrow q + \text{gluon } g \]
- Analogous to \(e \rightarrow e + \gamma \)
- Bound state of \(q\bar{q} \)
- Scattering of two quarks
- Force between two quarks is mediated by the exchange of gluons
Quantum Chromodynamics QCD: similarities and differences to QED

- QED: one type of charge, i.e. *one* number (+, -); photon is neutral
- QCD: *three* kinds of color: red, green, blue
 - Fundamental process $q \rightarrow q + g$
 : color of quark (not its flavor may change in strong interactions)
 e.g.: blue up-quark \Rightarrow red up-quark
 color is conserved \Rightarrow gluon carries away the difference
 gluons are ‘bicolored’ with one positive and negative unit (e.g.: one unit of blueness and minus one unit of redness)
 $3 \times 3 = 9$ possibilities \Rightarrow experimentally only 8 different gluons observed; ninth gluon would be ‘color singlet’ (color neutral) and therefore observable \Rightarrow not observed, i.e. does not exist
QED and QCD: similarities and differences

- QED Lagrangian derived with the requirement of ‘local gauge invariance’; gauge group is U(1)
 \[\mathcal{L} = \left[i\hbar c \overline{\psi} \gamma^\mu \partial_\mu \psi - mc^2 \overline{\psi} \psi \right] - \left[\frac{1}{16\pi} F^{\mu\nu} F_{\mu\nu} \right] - (q \overline{\psi} \gamma^\mu \psi) A_\mu \quad F^{\mu\nu} = \partial^\mu A^\nu - \partial^\nu A^\mu \]
 with \(A_\mu \) a new massless field such that \(A_\mu \rightarrow A_\mu + \partial_\mu \lambda \)

- QCD Lagrangian \(\mathcal{L} = i\hbar c \overline{\psi} \gamma^\mu \partial_\mu \psi - mc^2 \overline{\psi} \psi \) for free quarks with \(\overline{\psi} = (\overline{\psi}_r \overline{\psi}_b \overline{\psi}_g) \), describes interaction of three (equal mass) color states-> require invariance under U(3), with U being a 3x3 matrix which can be written as \(U = e^{i\theta} e^{i\tilde{\lambda} \cdot \tilde{a}} \); \(\tilde{\lambda} \cdot \tilde{a} = \lambda_1 a_1 + \lambda_2 a_2 + \ldots + \lambda_8 a_8 \)

- Matrix \(e^{i\tilde{\lambda} \cdot \tilde{a}} \) has determinant 1-> belongs to SU(3) -> want to derive Lagrangian invariant under local SU(3) invariance

- \(\psi \rightarrow S\psi \), where \(S = e^{iq\tilde{\lambda} \cdot \Phi(x)/\hbar c} \); \(\Phi \equiv -(\hbar c / g_s)\tilde{a} \); \(g_s \) is coupling constant

- Complete QCD Lagrangian
 \[\mathcal{L} = \left[i\hbar c \overline{\psi} \gamma^\mu \partial_\mu \psi - mc^2 \overline{\psi} \psi \right] - \left[\frac{1}{4} G_{\mu\nu}^k G^{\mu\nu}_k \right] - g_s (\overline{\psi} \gamma^\mu \frac{\lambda^k}{2} \psi) G^k_\mu \]

1st term: free quark; 2nd term: gluon field; 3rd term: quark-gluon interaction
QCD Lagrangian:

- Complete QCD Lagrangian

\[\mathcal{L} = [i \hbar c \overline{\psi} \gamma^\mu \partial_\mu \psi - mc^2 \overline{\psi} \psi] - \left[\frac{1}{4} G_{\mu \nu}^k G_{k}^{\mu \nu} \right] - g_s (\overline{\psi} \gamma^\mu \frac{\lambda^k}{2} \psi) G_{\mu}^k \]

with

\[G_{\mu \nu}^k = \partial_\mu G_{\nu}^k - \partial_\nu G_{\mu}^k - g_s f_{kjl} G_{\mu}^j G_{\nu}^l \]

- 1st part is analog to photon field in QED; 2nd term is new: quadratic in gluon field

\[\mathcal{L}_{QCD} = (q\overline{q}) + g(q\overline{q}F) + (F^2) + g(F^3) + g^2(F^4) \]

- Lagrangian describes three equal-mass Dirac fields (the three colors of a given quark flavor) with eight massless vector fields (the gluons)
- Lagrangian applies to one specific quark flavor; need altogether six replicas of \(\psi \) for the six quark flavors
QCD: Gluon-Gluon coupling

Gluons, carrying color, (unlike the electrically neutral photon) may couple to other gluons ⇒ three and four gluon vertices ⇒ QCD more complicated (but also richer: allows far more possibilities)

- Coupling constant $\alpha_s \sim 1$ ⇒ higher order diagrams make significant (sometimes even even dominant) contributions: a real problem!
- However, triumph of QCD: discovery that α_s is NOT constant, but depends on the separation of the interacting particles ⇒ ‘running’ coupling constant:
 - α_s is large at large distances (larger than proton) ⇒ ‘confinement’
 - α_s is small at very short distances (smaller than proton) ⇒(‘asymptotic freedom’)
Detour to QED

- Also in electrodynamics: effective coupling also depends on distance
 - Charge q embedded in dielectric medium ε (polarizable)
 - medium becomes polarized
 - Particle q acquires halo of negative particles, partially screening the charge q
 - at large distance charge is reduced to q / ε
 - in QED: vacuum behaves like dielectric
 - full of virtual positron-electron pairs
 - virtual electron attracted to q, positron repelled

- This vacuum polarization screens partially the charge at distances larger than $h/mc = 2.4 \times 10^{-10}$ cm (Compton wavelength of electron)
- Measurable, e.g. in structure of hydrogen levels
- NOTE: we measure the ‘screened’ charge, not the ‘bare’ charge
• QED: coupling constants modified by virtual effects (‘loop diagrams’) which ‘screens’ the electric charge and modifies the coupling constant as a function of the distance (or equivalently; of the momentum transfer of a reaction); observable: Lamb shift; anomalous magnetic moment

$$\alpha_{QED} = \frac{\alpha(0)}{1 - \left[\alpha(0)/3\pi\right] \ln \left|\frac{q^2}{(mc)^2}\right|} \quad \text{for } |q^2| >> (mc)^2$$

• Coupling constant α_{QED} varies only very weakly with q^2
QCD: More complicated

- Diagrams analogous to QED contribute to vacuum polarization

- qqg vertex: contributes to increasing coupling strength at short distance (analogous to vacuum polarization in QED); strength depends on number of quark flavors f

- BUT: in addition: direct gg vertex; strength depends on the number of gluons, i.e. number of colors n

- Competition between quark polarization diagrams, $\alpha_s \uparrow$ and gluon polarization, $\alpha_s \downarrow$ at short distances
QCD vacuum polarization and ‘Camouflage’

- In polarized medium the quark continuously emits and reabsorbs gluons, changing constantly its color
- Color-charged gluons propagate to appreciable distances, spreading the color charge of the quark, camouflaging the quark, which is source of the color charge
 - The smaller the region around the quark the smaller the effective color charge of the quark → color charge felt by quark of another color charge approaching the quark will diminish as the quark approaches the first one
- Net effect: competition between screening and camouflage
- **QCD: critical parameter** $a = 2f$ (of flavors) – $11n$ (number of colors)
 - if a is positive (as in QED), coupling increases at short distance
 - in SM: $n = 3, f = 6; a = -21$; QCD coupling decreases at short distance
The screening effects happen in QCD (quark-antiquark loops), BUT in addition due to gluon couplings ‘camouflage’ of color charge. With the result for the coupling constant

$$\alpha_{QCD} = \alpha_s = \frac{\alpha_s(\mu^2)}{1 + \left[\alpha(\mu^2)/12\pi\right](11n - 2f)\ln\left[\frac{|q^2|}{\mu^2}\right]} \quad \text{for} \quad |q^2| >> \mu^2$$

With n= colors (3 in SM) and f= number of quark flavors (6 in SM); μ is a reference value around which α_s is evaluated.

At large $q^2 \alpha_s$ becomes less than 1-> perturbation theory is applicable; -> Asymptotic Freedom.

There are equivalent Feynman rules for quantitative calculations: perturbative QCD is quantitatively tested at the <1% level.
The Nobel Prize in Physics 2004 was awarded jointly to David J. Gross, H. David Politzer and Frank Wilczek "for the discovery of asymptotic freedom in the theory of the strong interaction".
The Nobel Prize in Physics 2004 was awarded jointly to David J. Gross, H. David Politzer and Frank Wilczek "for the discovery of asymptotic freedom in the theory of the strong interaction".

Reflections by Frank Wilczek:
- We used a mixture of rigorous thinking and calculation together with wishful thinking and guesswork - whatever seemed to work!
- Experiment was crucial, both technically and psychologically. Also “experiment”.
- We worked very hard, but it didn’t seem laborious.

Lessons (Frank Wilczek)?
- Focus on paradoxes and surprising simplicities.
- It’s OK to make progress on one problem, without addressing all problems.)
- Good technique and hard work can be crucial to success.
QCD: One more difference

- quarks are confined in colorless packages
- experimental observations are indirect and are complicated manifestations of QCD
- force between two protons involves diagrams of the type shown
- reminiscent of the Yukawa π-exchange model

- QCD: theory must prove confinement: ongoing major task of theoretical research!
- QCD prediction at very high temperature (short range) phase transition to deconfined ‘Quark-Gluon Plasma’ -> subject of intense theoretical and experimental current research
Possible Scenario for Quark Confinement

- Concept for *proof* of quark confinement: potential energy increases without limit as quarks are pulled farther and farther apart -> energetically more favorable to produce quark-antiquark pairs
- Conclusive proof for confinement still lacking: long-range interaction difficult to treat theoretically
Quark-Gluon Plasma

- One ‘golden’ prediction of QCD is the ‘Quark-Gluon Plasma’, deconfined quarks and gluons at very high density or temperature
 - T ~ 170 MeV ~ 2*10^{12} K
 - thought to have been the primordial matter up to the first microsecond after the Big Bang
- Considered to be created in very energetic collisions of heavy nuclei (e.g. lead ions)
 - Was an active program at the CERN SPS; now actively being pursued at RHIC (Relativistic Heavy Ion Collider) at Brookhaven, USA
 - Major research activity at the LHC with one dedicated facility (ALICE... A Large Ion Collider Experiment)
At sufficiently high temperature Nuclear Matter undergoes a phase transition to deconfined quarks and gluons: Quark-Gluon Plasma;
Gravity: a fundamental correspondence

- Most-cited theoretical development of last decade
- Correspondence between anti-deSitter Gravity and conformal Quantum Field-Theories: AdS/CFT
 - Discovery within frame of Superstring-Theory
 - Strongly interacting Quantum Fieldtheorie (z.B. QCD) in 3 space and 1 time dimension → equivalently described with 5-dimensional Gravity theory
Applying the AdS/CFT correspondence:
Black Holes <-> Quark-Gluon Plasma

- Spectacular application: strongly coupled Quark-Gluon Plasma is described with the physics of black holes in 5 dimensions (and vice-versa)
- Successful prediction: viscosity of Quark-Gluon Plasma
- Quark-Gluon Plasma is a very active field of study at LHC