Abstract

At LHC 40 million collisions of proton bunches occur every second, resulting in about 800 million proton collisions. The Level-1 trigger, a custom designed electronics system based on FPGA technology, performs a quick on-line analysis of each collision every 25 ns and decides whether to reject or to accept it for further analysis. As part of the Global Trigger Upgrade, the current system will be redesigned and implemented for MicroTCA based technology, which allows engineers to detect all possible faults on plug-in boards, in the power supply and in the cooling system. Additionally, reconfigurability and testability will be supported based on the next system generation.

1. Current implementation

The Global Trigger electronics for the CMS is hardware based:
- Dominated by FPGAs
- Fixed latency
- Guaranteed behaviour per event
- Receives trigger objects from the Global Calorimeter Trigger, the Global Muon Trigger and calculates in parallel up to 128 Algorithms
- Flexible to adapt to changing conditions: beam type (protons, heavy ions), higher rates
- Generates L1 Accept signals for starting the Data Acquisition System and the High Level Trigger software

2. Physics requirements for a new trigger system

Future physics requirements for an improvement of the Level-1 Trigger:
- Physicists will require more complex algorithms
- Improve flexibility in dealing with changing requirements, i.e. growing luminosity
- Significantly more channels when the Silicon Strip Tracker is added as a trigger source during the Phase-2 upgrade of the CMS experiment

3. New development for Trigger electronics

The next generation of the Global Trigger is based on MicroTCA and takes advantage of:
- Scalable modern architecture
- High speed serial connectivity available in MicroTCA (fat pipes)
- Remote management system that detects all possible faults on plug-in boards, in the power supply and in the cooling system
- Development and implementation of just one card type for the whole system
- Reconfigurability, Testability, Usability
- Use more algorithms in a more flexible way and apply any required prescale factors
- Sending read-out records to DAQ over GbE through backbone

4. Hardware architecture

The next generation of GT uses the advantages of:
- Dual star MicroTCA backbone
- Redundant MCH slot used to distribute/receive control and feedback information
- Commercial AMC FPGA Carrier (AMC514-Xilinx Virtex-6 FPGA) from VadaTech with customized FMC (designed by HEPHY)
- Cross Bar Switch for 48 inputs and 48 outputs (12 AMCs with 4 ports each) with 6.5 Gbps data bandwidth per channel
- Distribute LHC clock over backbone

5. Customized hardware development

We are developing a customized FPGA Mezzanine Card (FMC) for AMC514 with the following features:
- Twelve-Channel, Pluggable, Parallel-Fiber-Optics Transmitter/Receiver Operates up to 6.25 Gbps

6. Software architecture

XML hardware abstraction
- API for resolution of name to register address
- Tree organization of registers
- Integrated datatype conversion functions
- Configuration by XML file

GT Control Web interface:
- Full display of register tree possible
- Partial tree display by single click
- Collapse and expand function
- Offline mode with hardware emulation

Current tested AMC bandwidth ↔ Global Trigger Control (System manager):
- Two obvious candidates: TCP and UDP
- TCP/IP:
 1. R/W → Avg:2.13s, Max:2.16s
 2. Write → Avg:1.08s, Max:1.09s
 3. Read → Avg: 1.08s, Max:1.08s
- UDP:
 1. R/W → Avg:0.16, Max:0.18s
 2. Write → Avg:0.08s, Max:0.08s
 3. Read → Avg: 0.08s, Max:0.08s
- Currently UDP outperforms TCP by a factor of ~10
- There are some possibilities to improve TCP performance