CMS L1 Global Muon Trigger Update

Hannes Sakulin, CERN / EP

Trigger Meeting, CMS Week, CERN
4th December, 2001

Hardware status
Thoughts on halo triggers
Simulation

URL of this presentation:
CMS Level-1 Trigger

CaloTrigger
- CAL Readout
 - Regional CALO Trigger
 - GLOBAL CALORIMETER TRIGGER
 - Bristol
 - MIP & quiet bits (2x 252)
 - Wisconsin

RPC
- Pattern Comparator
 - Warsaw

PACT
- Track Correlator
 - Trigger Server

DTBX
- Bunched Track Finder
 - HEPHY Vienna

CSC
- Endcap Track Finder
 - Endcap Trigger
 - CSC Sorter
 - Strip cards
 - Motherboard

RPC Sorter
- Bari

DT Sorter
- Bologna

GLOBAL MUON TRIGGER

GLOBAL L1 TRIGGER

L1 Accept …………
max. 100 kHz

Pipe-lined
40 MHz

4+4 μ
4 μ
4 μ

HEPHY Vienna

HeoL1 Global Muon Trigger Update
Principle of the GMT

Inputs:
8 bit ϕ, 6 bit η, 5 bit p_T, 1 bit charge, 3 bit quality

Output:
8 bit ϕ, 6 bit η, 5 bit p_T, 1 bit charge, 3 bit quality, 1 bit MIP, 1 bit Isolation

Further Inputs:
MIP and Quiet Bits of 252 calorimeter regions

- Increase efficiency
- Reduce ghosts
- Reduce trigger rate by improving p_T assignment
- Add MIP & ISO bits from calorimeter

Best 4 μ
 GMT in the Global Trigger Crate

→ 1 GMT Logic Board (front panel 4 slots wide)
→ 3 PSB boards to receive calorimeter information
PSB 6 channel prototype

Prototype available
Hannes Sakulin
CERN/EP
L1 Global Muon Trigger Update
6
Trigger Meeting, CPT Week
CERN, 4th December 2001

GMT single-board solution

Latency: 14 bx

Single board Global Muon Trigger

- Front panel
 - 4µ RPC fwd
 - 4µ CSC
 - 4µ RPC barr
 - 4µ DT
- LVDS receivers: 16 SCSI-2
- VME/ROPuat
- fwd_LOGIC FPGA
- GMT-IN FPGA: 4µ
- synchronisation, readout, ...
- ISO/MIP: 4µ
- CMS/DT: cancel out
- CSC/DT cancel out
- ISO/MIP: 4µ
- HANDLE: 4µ barr
- barrel_LOGIC FPGA
- barrel PROJECTION FPGA
- forward PROJECTION FPGA
- η converters, SINGLE
 - MATCH & PAIR LOGIC
 - η converters, SINGLE
 - MATCH & PAIR LOGIC
- MUON MERGER & fwd SORTER
- MUON MERGER & fwd SORTER
- fwd: (180MIP+180 ISO)/2
- barr: (144 MIP+144 ISO)/2
- MIP+ QUIET bit
- Reformatting
- ChLink
- LIA...
- 16 pins
- 10 pins
- 52 pins
- 80MHz GTLP
- 180 pins
- 144 pins
- 16 pins

All logic functions defined
GMT Hardware schedule

<table>
<thead>
<tr>
<th>ID</th>
<th>Task Name</th>
<th>98</th>
<th>1999</th>
<th>2000</th>
<th>2001</th>
<th>2002</th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>GMT Conceptual Design</td>
<td>H2</td>
<td>H1</td>
<td>H2</td>
<td>H1</td>
<td>H2</td>
<td>H1</td>
<td>H2</td>
<td>H1</td>
</tr>
<tr>
<td>2</td>
<td>GMT simulation, logic design</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>GMT FPGA design</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>GMT production</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>GMT available</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Finish delivery</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Online Software</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Finish commissioning</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Milestones / Plans:

- **2001** Logic design, ORCA + VHDL Simulation
 - **Dec 2001** Logic design finished
 - Logic functions defined “up to the last bit”.
 - Chip types, bus widths, LUTs, registers, read-out processing,… defined.
- **2002** VHDL Simulation, Design of FPGA chips
 - **Dec 2002** FPGA design finished
- **2003** Production of VME 9U Boards
- **2004/05** Integration tests, production of spare boards
Progress in 2001:
- All logic functions defined
 - Chip Models selected (mostly Virtex II), Interconnections defined
 - Design compacted (external RAMs moved into big FPGAs)
 - 50-page internal GMT design document + drawings
- Functionality improved
 - DT/CSC cancel-out unit (improved performance in barrel/endcap overlap region)
- Simulation studies
 - ORCA Simulation extended and improved (calo projection, cancel-out unit, …)
 - studies to optimize GMT design parameters and performance

Plans for 2002:
- continue VHDL simulation of FPGA chips
- VHDL simulation of GMT board
- Synthesis / design of FPGAs
- in parallel further studies with ORCA
The situation

- halo muons are seen by CSC, only (flag indicates halo muon)
- 4 bunch crossings delay between the two endcaps
- read-out will only work correctly in one half of the detector, where halo muon is moving away from interaction point
- do we need matching between the endcaps for alignment?
Possible algorithms (from GMT point of view)

A) no matching between endcaps
 A1) Change read-out to read CSC data also from 4 bx earlier (if halo trigger)
 A2) get 2 L1 accepts within 4 bx (can interfere with other triggers)

B) Matching without direction-information
 • GMT stores all halo muons in pipeline and matches with halo muons 4 bx later
 • works if we want to trigger only on matched halo muons (both endcaps)
 • if we also want to trigger on unmatched halo muons we get double triggers

C) Matching with direction information
 • we get direction information from CSC: fromIP / toIP
 • GMT stores toIP halo muons in pipeline and matches with fromIP halo muons 4 bx later
 • can trigger on matched and/or unmatched halo muons
Monte Carlo production (Pythia 6.152, CMSIM 121)
- using Pythia default normalization
- lower p_T-cut (p-cut) in forward region
 (now $p > 3.5$ GeV/c, in 2000: $p_T > 1.5$ GeV/c)
- increased η-range up to in CMSIM
 (now 5.5, in 2000: 2.5)
- muons in pile-up vetoed
- LHC luminosity $L = 2 \times 10^{33}$ cm$^{-2}$s$^{-1}$
- new (Nov 2001): increased statistics

L1 Trigger simulation (ORCA 5.3.1)
- new CSC Trigger Primitives (since ORCA 5.1.2)
- updated CSC Track Finder (since ORCA 5.1.2)
- updated Global Muon Trigger (since ORCA 5.1.2)
- new with respect to last processing
 - DT re-digitized, updates in CSC Trigger and CSC Track Finder
- RPC: without noise and neutral background simulation

<table>
<thead>
<tr>
<th>Sample</th>
<th>L_{int}/nb$^{-1}$</th>
<th>Events in luminosity</th>
</tr>
</thead>
<tbody>
<tr>
<td>mu_MB1mu_pt1</td>
<td>0.0247</td>
<td>231k (x1.5)</td>
</tr>
<tr>
<td>mu_MB1mu_pt4</td>
<td>0.4071</td>
<td>107k (x2)</td>
</tr>
<tr>
<td>mu_MB1mu_pt10</td>
<td>2.81</td>
<td>41k</td>
</tr>
<tr>
<td>W_1mu</td>
<td>2856.</td>
<td>43k</td>
</tr>
<tr>
<td>Z_1mu</td>
<td>2336.</td>
<td>50k</td>
</tr>
<tr>
<td>mu_MB2mu</td>
<td>0.2935</td>
<td>32k (x3)</td>
</tr>
</tbody>
</table>

background samples – 2001 muon production
Generated rates

~200 Hz in year 2000 production (scaled to L=2x10^{33})

L=2x10^{33} cm^{-2} s^{-1}
L1 single muon trigger rates
samples: pt1, pt4, pt10, W, Z

whole detector: 0 < |\(\eta \)| < 2.5

\[L = 2 \times 10^{33} \text{ cm}^{-2} \text{ s}^{-1} \]

- **50 kHz DAQ**
 - 3.5 kHz @ 14 GeV/c
 - Scaled from TDR: 7.1 kHz

- **75 kHz DAQ**
 - 5.5 kHz @ 12 GeV/c
 - Scaled from TDR: 10.6 kHz

- **25 kHz DAQ**
 - 1.55 kHz @ 20 GeV/c
 - Scaled from TDR: 2.9 kHz

Graph Details:*
- **Y-axis**: Trigger Rate (Hz)
- **X-axis**: muon \(p_T^{\text{cut}} \) (GeV/c)
- **Legend**:
 - Gen
 - DT + CSC
 - RPC
 - GMT Sep2001 tuning
 - GMT Nov2001 tuning
Nov 2001 Re-tuning of GMT algorithm

L1 efficiency

GMT Sep2001 tune

L = 2 \times 10^{33} \text{ cm}^{-2} \text{ s}^{-1}

GMT Nov2001 tune

\text{eff} = 96.5 \%

\text{eff} = 96.9 \%

\eta \rightarrow \text{(*)efficiency to find muon of any } p_T \text{ in flat } p_T \text{ sample}
L1 di-muon trigger rates
samples: pt1, pt4, pt10, 2mu_pt1, GMT Nov 2001 tune

trigger rates in Hz

\(L = 2 \times 10^{33} \text{ cm}^{-2} \text{ s}^{-1} \)
L1 di-muon trigger rates, $p_{T,2} \geq 4$ GeV/c
samples: $pt1$, $pt4$, $pt10$, $2mu_{pt1}$, GMT Nov 2001 tune

Di-muon Rates - $p_{T,2} \geq 4$ GeV/c

Trigger Rate / Hz

10^3

10^2

10^1

10

$L=2 \times 10^{33} \text{ cm}^{-2} \text{ s}^{-1}$

muon $p_{T,1}^{\text{cut}}$ (GeV/c)

4 6 8 10 12 14 16 18 20

Gen

DT + CSC

CSC

RPC

GMT

GMT from ghosts

GMT 2 μ from 1 event

GMT 2 μ from 2 events in 1 bx

Hannes Sakulin
CERN/EP

L1 Global Muon Trigger Update

17

Trigger Meeting, CPT Week
CERN, 4th December 2001
L1 single & di-muon trigger rates
symmetric di-muon cut, GMT Nov 2001 tune

L1 single and di-muon trigger rates

trigger rates in kHz

L = 2 x 10^{33} \text{ cm}^{-2} \text{s}^{-1}

binning

L1 Global Muon Trigger Update
L1 single and di-muon trigger rates, lower di-muon cut: 3.0 GeV/c

Trigger rates in kHz

L = 2 x 10^{33} cm^{-2} s^{-1}

Lower threshold 3 GeV/c

Binning
Conclusion

- Progress in hardware design as planned
 - all logic functions defined
 - design compacted & improved
 - new solution with one logic board

- Planned R&D in 2002
 - VHDL simulation of FPGAs and board
 - design of FPGAs

- Trigger on halo muons:
 - GMT can provide matching between endcaps with delay
 - possible during normal physics running

- Simulation results with 2001 muon production
 - results with increased statistics for low luminosity scenario
 - GMT re-tuned to increase efficiency in the overlap region
 - p_T-cut was lower than in last year’s production
 - improved CSC trigger & GMT can cope with higher background rate